Mathematical Analysis of a Full Wave Rectifier

During the first half of each power cycle,e2N is negative and e1N is positive. Therefore diode D1 conducts and current i1 flows through RL .This current is obtained as


i1=EmSinωt/(Rf+RL) = ImSinωt ( when 0≤ωt≤π)

                                 = o   ( when π ≤ωt≤2π)

During the second half of each power cycle,e2N is positive and e1N is negative. Therefore diode D2 conducts and current i2 flows through RL .This current is obtained as 

 i2=EmSinωt/(Rf+RL) = ImSinωt ( when  π≤ωt≤2π)

                                 = o   ( when 0≤ωt≤π)

The current through the load is the sum of i1 and i2 and unidirectional in the whole cycle. The below figure shows the profile of currents  iand i2 and i. The  DC current is  

                  idc =1/2π [∫ ImSinωtd(ωt) + ∫ ImSinωtd(ωt) ] (first integral is integrated over o to π and second integral is integrated over π to 2π)

                           idc =  2Im/π

The rms current is given by

                             I =  [1/2π∫i²d(ωt)]0.5 (limit of the integration is from o to 2π)

                               =   [1/2π∫I²mSin²ωtd(ωt)]0.5

                                =  Im/√2

It is seen that both Idc and  in this circuit are twice of those in the half wave circuit.

The voltage across the load is (iRL).

                         

Also

Vm  = EmRL/(Rf+RL

Vdc = EmRL/π(Rf+RL)

V    = EmRL/√2(Rf+RL) 

The dc power delivered to the load is obtained as

                               Pdc = I² dc*RL = 4E²m*RL/π²(Rf+RL)²

The efficiency of Full Wave circuit is obtained as 

                              Pin = I²(Rf+RL) = E²m/2(Rf+RL)

The efficiency of the Full Wave rectifier , is obtained as 

                                        η = Pdc/ Pin  = 0.812/(1+ Rf+RL)

                      


              



No comments:

Post a Comment